定义

卡塔兰常数(Catalan’s Constant)常用字母 G 表示, 我们先来看看它的定义:

级数定义式: G:=n=0(1)n(2n+1)2G:=\sum_{n=0}^{∞}{\dfrac{(-1)^{n}}{(2n+1)^{2}}},积分定义式:G:=0π/4lntanx dxG:=-\int_{0}^{\pi/{4}}\ln \tan x \ \mathrm{d}x

这两种定义可以互相转化:作换元 t=tanxt=\tan x, 有

G=0π/4lntanx dx=01lnt darctant=[lntarctant]01+01arctantt dt=0+01n=0(1)nt2n2n+1 dt=n=0(1)n01t2n2n+1 dt=n=0(1)n[t2n+1(2n+1)2]01=n=0(1)n(2n+1)2.\begin{aligned} G&=-\int_{0}^{\pi/4}\ln\tan x\ \mathrm{d}x\\ &=-\int_{0}^{1}\ln t\ \mathrm{d}\arctan t\\ &=\left[-\ln t\cdot\arctan t \right]_{0}^{1}+\int_{0}^{1}\frac{\arctan t}{t}\ \mathrm{d}t\\ &=0+\int_{0}^{1}\sum_{n=0}^{∞}{\frac{(-1)^{n}t^{2n}}{2n+1}}\ \mathrm{d}t\\ &=\sum_{n=0}^{∞}{(-1)^{n}}\int_{0}^{1}\frac{t^{2n}}{2n+1}\ \mathrm{d}t\\ &=\sum_{n=0}^{∞}{(-1)^{n}\left[\frac{t^{2n+1}}{(2n+1)^{2}} \right]_{0}^{1}}\\ &=\sum_{n=0}^{∞}{\frac{(-1)^{n}}{(2n+1)^{2}}}. \end{aligned}

由它的定义和上述推导过程, 有
(1)

0π/4lntanx dx=G.\begin{aligned} \int_{0}^{\pi/{4}}\ln \tan x \ \mathrm{d}x=-G. \end{aligned}

(2)

0π/4lncotx dx=G.\begin{aligned} \int_{0}^{\pi/{4}}\ln \cot x \ \mathrm{d}x=G. \end{aligned}

(3)

01arctantt dt=G.\begin{aligned} \int_{0}^{1}\frac{\arctan t}{t} \ \mathrm{d}t=G. \end{aligned}

这三个积分表达式的任何一个都可以作为卡塔兰常数的积分定义式.

相关积分

先证明两个常见的不含卡塔兰常数的积分等式:

0π/2lnsinx dx=π2ln2.\begin{aligned} \int_{0}^{\pi/2}\ln \sin x \ \mathrm{d}x=-\frac{\pi}{2}\ln2. \end{aligned}

0π/4ln(1+tanx) dx=π8ln2.\begin{aligned} \int_{0}^{\pi/4}\ln(1+\tan x) \ \mathrm{d}x=\frac{\pi}{8}\ln2. \end{aligned}

证:

0π/2lnsinx dx=0π/2lncosx dx=120π/2(lnsinx+lncosx) dx=120π/2(lnsin2x+ln12) dx=140πlnsinx dx+12(ln12)π2=120π/2lnsinx dxπ4ln2=π2ln2.\begin{aligned} &\int_{0}^{\pi/2}\ln \sin x \ \mathrm{d}x\\ =&\int_{0}^{\pi/2}\ln \cos x \ \mathrm{d}x\\ =&\frac{1}{2}\int_{0}^{\pi/2}(\ln \sin x+\ln \cos x) \ \mathrm{d}x\\ =&\frac{1}{2}\int_{0}^{\pi/2}(\ln \sin 2x+\ln\frac{1}{2}) \ \mathrm{d}x\\ =&\frac{1}{4}\int_{0}^{\pi}\ln \sin x \ \mathrm{d}x+\frac{1}{2}\cdot(\ln\frac{1}{2})\cdot\frac{\pi}{2}\\ =&\frac{1}{2}\int_{0}^{\pi/2}\ln \sin x \ \mathrm{d}x-\frac{\pi}{4}\ln2\\ =&-\frac{\pi}{2}\ln2. \end{aligned}

0π/4ln(1+tanx) dx=0π/4ln(1+tan(π4x)) dx=0π/4ln(1+1tanx1+tanx) dx=0π/4(ln2ln(1+tanx)) dx=π4ln20π/4(ln(1+tanx)) dx=π8ln2.\begin{aligned} &\int_{0}^{\pi/4}\ln(1+\tan x) \ \mathrm{d}x\\ =&\int_{0}^{\pi/4}\ln(1+\tan(\frac{\pi}{4}-x)) \ \mathrm{d}x\\ =&\int_{0}^{\pi/4}\ln(1+\frac{1-\tan x}{1+\tan x}) \ \mathrm{d}x\\ =&\int_{0}^{\pi/4}(\ln2-\ln(1+\tan x)) \ \mathrm{d}x\\ =&\frac{\pi}{4}\ln2-\int_{0}^{\pi/4}(\ln(1+\tan x)) \ \mathrm{d}x\\ =&\frac{\pi}{8}\ln2. \end{aligned}

接下来推导 19 个跟卡塔兰常数有关的积分等式:
(4)

0π/4lnsinx dx=12Gπ4ln2.\begin{aligned} \int_{0}^{\pi/4}\ln \sin x \ \mathrm{d}x=-\frac{1}{2}G-\frac{\pi}{4}\ln2. \end{aligned}

(5)

0π/4lncosx dx=12Gπ4ln2.\begin{aligned} \int_{0}^{\pi/4}\ln \cos x \ \mathrm{d}x=\frac{1}{2}G-\frac{\pi}{4}\ln2. \end{aligned}

证:

0π/4lnsinx dx+0π/4lncosx dx=0π/4ln(sinxcosx) dx=0π/4lnsin2x dx+0π/4ln12 dx=120π/2lnsinx dxπ4ln2=12(π2ln2)π4ln2=π2ln2.\begin{aligned} &\int_{0}^{\pi/4}\ln \sin x \ \mathrm{d}x+\int_{0}^{\pi/4}\ln \cos x \ \mathrm{d}x\\ =&\int_{0}^{\pi/4}\ln(\sin x\cos x) \ \mathrm{d}x\\ =&\int_{0}^{\pi/4}\ln \sin2x \ \mathrm{d}x+\int_{0}^{\pi/4}\ln\frac{1}{2} \ \mathrm{d}x\\ =&\frac{1}{2}\int_{0}^{\pi/2}\ln \sin x \ \mathrm{d}x-\frac{\pi}{4}\ln2=\frac{1}{2}(-\frac{\pi}{2}\ln2)-\frac{\pi}{4}\ln2\\ =&-\frac{\pi}{2}\ln2. \end{aligned}

0π/4lncosx dx0π/4lnsinx dx=0π/4lncotxdx=G.\begin{aligned} \int_{0}^{\pi/4}\ln \cos x \ \mathrm{d}x-\int_{0}^{\pi/4}\ln \sin x \ \mathrm{d}x =\int_{0}^{\pi/4}\ln \cot x\mathrm{d}x=G. \end{aligned}

(6)

0π/2ln(1+sinx) dx=2Gπ2ln2.\begin{aligned} \int_{0}^{\pi/2}\ln(1+\sin x) \ \mathrm{d}x=2G-\frac{\pi}{2}\ln2. \end{aligned}

(7)

0π/2ln(1+cosx) dx=2Gπ2ln2.\begin{aligned} \int_{0}^{\pi/2}\ln(1+\cos x) \ \mathrm{d}x=2G-\frac{\pi}{2}\ln2. \end{aligned}

证:

0π/2ln(1+cosx) dx=0π/2ln(2cos2x2) dx=π2ln2+20π/2lncosx2 dx=π2ln2+40π/4lncosx dx=π2ln2+4(12Gπ4ln2)=2Gπ2ln2.\begin{aligned} &\int_{0}^{\pi/2}\ln(1+\cos x) \ \mathrm{d}x\\ =&\int_{0}^{\pi/2}\ln(2\cos^2\frac{x}{2}) \ \mathrm{d}x\\ =&\frac{\pi}{2}\ln2+2\int_{0}^{\pi/2}\ln \cos\frac{x}{2} \ \mathrm{d}x\\ =&\frac{\pi}{2}\ln2+4\int_{0}^{\pi/4}\ln \cos x \ \mathrm{d}x\\ =&\frac{\pi}{2}\ln2+4(\frac{1}{2}G-\frac{\pi}{4}\ln2)\\ =&2G-\frac{\pi}{2}\ln2. \end{aligned}

由区间再现得(6)=(7).
(8)

0π/2xsinx1+cosxdx=2Gπ2ln2.\begin{aligned} \int_{0}^{\pi/2}\frac{x\sin x}{1+\cos x}\mathrm{d}x=2G-\frac{\pi}{2}\ln2. \end{aligned}

(9)

0π/2xcosx1+sinxdx=2G+πln2.\begin{aligned} \int_{0}^{\pi/2}\frac{x\cos x}{1+\sin x}\mathrm{d}x=-2G+\pi\ln2. \end{aligned}

证:

0π/2ln(1+cosx) dx=[xln(1+cosx)]0π20π/2xsinx1+cosxdx=0π/2xsinx1+cosx dx.\begin{aligned} \int_{0}^{\pi/2}\ln(1+\cos x) \ \mathrm{d}x=\left[ x\ln(1+\cos x) \right]_{0}^{\frac{\pi}{2}}- \int_{0}^{\pi/2}\frac{-x\sin x}{1+\cos x}\mathrm{d}x=\int_{0}^{\pi/2}\frac{x\sin x}{1+\cos x} \ \mathrm{d}x. \end{aligned}

0π/2xsinx1+cosx dx=2Gπ2ln2.\begin{aligned} \int_{0}^{\pi/2}\frac{x\sin x}{1+\cos x} \ \mathrm{d}x=2G-\frac{\pi}{2}\ln2. \end{aligned}

0π/2ln(1+sinx) dx==[xln(1+sinx)]0π20π/2xcosx1+sinxdx=π2ln20π/2xcosx1+sinx dx.\begin{aligned} \int_{0}^{\pi/2}\ln(1+\sin x) \ \mathrm{d}x==\left[ x\ln(1+\sin x) \right]_{0}^{\frac{\pi}{2}}- \int_{0}^{\pi/2}\frac{x\cos x}{1+\sin x}dx=\frac{\pi}{2}\ln2-\int_{0}^{\pi/2}\frac{x\cos x}{1+\sin x} \ \mathrm{d}x. \end{aligned}

0π/2xcosx1+sinx dx=2G+πln2.\begin{aligned} \int_{0}^{\pi/2}\frac{x\cos x}{1+\sin x} \ \mathrm{d}x=-2G+\pi\ln2. \end{aligned}

(10)

0π/2ln(1cosx) dx=2Gπ2ln2.\begin{aligned} \int_{0}^{\pi/2}\ln(1-\cos x) \ \mathrm{d}x=-2G-\frac{\pi}{2}\ln2. \end{aligned}

(11)

0π/2ln(1sinx) dx=2Gπ2ln2.\begin{aligned} \int_{0}^{\pi/2}\ln(1-\sin x) \ \mathrm{d}x=-2G-\frac{\pi}{2}\ln2. \end{aligned}

证:

0π/2ln(1cosx) dx=0π/2ln(2sin2x2) dx=π2ln2+20π/2lnsinx2 dx=π2ln2+40π/4lnsinx dx=π2ln2+4(12Gπ4ln2)=2Gπ2ln2.\begin{aligned} &\int_{0}^{\pi/2}\ln(1-\cos x) \ \mathrm{d}x\\ =&\int_{0}^{\pi/2}\ln(2\sin^2\frac{x}{2}) \ \mathrm{d}x\\ =&\frac{\pi}{2}\ln2+2\int_{0}^{\pi/2}\ln \sin\frac{x}{2} \ \mathrm{d}x\\ =&\frac{\pi}{2}\ln2+4\int_{0}^{\pi/4}\ln \sin x \ \mathrm{d}x\\ =&\frac{\pi}{2}\ln2+4(-\frac{1}{2}G-\frac{\pi}{4}\ln2)\\ =&-2G-\frac{\pi}{2}\ln2. \end{aligned}

由区间再现得(11)=(10).