形成过程 参数方程 {x=a(t−sint)y=a(1−cost)(2kπ<t<2(k+1)π),k=0,±1,±2,… ) \begin{cases} x=a(t-sint)\\ y=a(1-cost)\\ \end{cases} (2k\pi<t<2(k+1)\pi),k=0,\pm1,\pm2,\dots) {x=a(t−sint)y=a(1−cost)(2kπ<t<2(k+1)π),k=0,±1,±2,…) 分析 导数 dydx=cott2 \dfrac{dy}{dx}=cot\dfrac{t}{2} dxdy=cot2t d2ydx2=−csc2t22a(1−cost) \dfrac{d^2y}{dx^2}=\dfrac{-csc^2\dfrac{t}{2}}{2a(1-cost)} dx2d2y=2a(1−cost)−csc22t 摆线图像 a>0a>0a>0 d2ydx2<0\dfrac{d^2y}{dx^2}<0dx2d2y<0 则曲线为凸函数 a<0a<0a<0 d2ydx2>0\dfrac{d^2y}{dx^2}>0dx2d2y>0 则曲线为凸函数