反三角函数的的相互关系
arcsinx=−arcsin(−x)=2π−arccosx=arctan1−x2x=arccos1−x2=arccotx1−x2(1)
最后两个等号只在 x>0 时成立,下同
arccosx=π−arccos(−x)=2π−arcsinx=arccot1−x2x=arcsin1−x2=arctanx1−x2(2)
arctanx=−arctan(−x)=2π−arccotx=arcsin1+x2x=arccos1+x21=arccotx1(3)
arccotx=π−arccot(−x)=2π−arctanx=arccos1+x2x=arcsin1+x21=arctanx1(4)
反三角函数的和差
反正弦:
arcsinx+arcsiny=arcsin(x1−y2+y1−x2)(xy≤0orx2+y2≤1)=π−arcsin(x1−y2+y1−x2)(x>0,y>0,x2+y2>1)=−π−arcsin(x1−y2+y1−x2)(x<0,y<0,x2+y2>1)(5)
arcsinx−arcsiny=arcsin(x1−y2−y1−x2)(xy≥0orx2+y2≤1)=π−arcsin(x1−y2−y1−x2)(x>0,y<0,x2+y2>1)=−π−arcsin(x1−y2−y1−x2)(x<0,y>0,x2+y2>1)(6)
反余弦:
arccosx+arccosy=arccos[xy−(1−x2)(1−y2)](x+y≥0)=2π−arccos[xy−(1−x2)(1−y2)](x+y<0)(7)
arccosx−arccosy=−arccos[xy+(1−x2)(1−y2)](x≥y)=arccos[xy+(1−x2)(1−y2)](x<y)(8)
反正切:
arctanx+arctany=arctan1−xyx+y(xy<1)=π+arctan1−xyx+y(x>0,xy>1)=−π+arctan1−xyx+y(x<0,xy>1)(9)
arctanx−arctany=arctan1+xyx−y(xy>−1)=π+arctan1+xyx−y(x>0,xy<−1)=−π+arctan1+xyx−y(x<0,xy<−1)(10)
反三角函数的二倍
反正弦:
2arcsinx=arcsin(2x1−x2)(∣x∣≤22)=π−arcsin(2x1−x2)(22<x≤1)=−π−arcsin(2x1−x2)(−1≤x<−22)(11)
反余弦:
2arccosx=arccos(2x2−1)(0≤x≤1)=2π−arccos(2x2−1)(−1≤x<0)(12)
反正切:
2arctanx=arctan1−x22x(∣x∣<1)=π+arctan1−x22x(∣x∣>1)=−π+arctan1−x22x(x<−1)(13)
余弦反余弦复合的重要关系公式:
cos(narccosx)=2(x+x2−1)n+(x−x2−1)n(n≥1)(14)