反三角函数的的相互关系

arcsinx=arcsin(x)=π2arccosx=arctanx1x2=arccos1x2=arccot1x2x(1)\begin{align} \arcsin x&=-\arcsin(-x)\\ &=\frac\pi 2-\arccos x\\&=\arctan\frac{x}{\sqrt{1-x^2}} \\&=\arccos\sqrt{1-x^2} \\ &=\operatorname{arccot}\frac{\sqrt{1-x^2}}x \end{align}\tag 1

最后两个等号只在 x>0 时成立,下同

arccosx=πarccos(x)=π2arcsinx=arccotx1x2=arcsin1x2=arctan1x2x(2)\begin{align} \arccos x&=\pi-\arccos(-x)\\ &=\frac\pi 2-\arcsin x\\ &=\operatorname{arccot}\frac{x}{\sqrt{1-x^2}}\\ &=\arcsin\sqrt{1-x^2}\\ &=\arctan\frac{\sqrt{1-x^2}}x \end{align}\tag2

arctanx=arctan(x)=π2arccotx=arcsinx1+x2=arccos11+x2=arccot1x(3)\begin{align} \arctan x&=-\arctan(-x)\\ &=\frac\pi 2-\operatorname{arccot}x\\ &=\arcsin\frac{x}{\sqrt{1+x^2}}\\ &=\arccos\frac 1{\sqrt{1+x^2}}\\ &=\operatorname{arccot}\frac 1x \end{align}\tag 3

arccotx=πarccot(x)=π2arctanx=arccosx1+x2=arcsin11+x2=arctan1x(4)\begin{align} \operatorname{arccot}x&=\pi-\operatorname{arccot}(-x)\\&=\frac\pi2-\arctan x\\&=\arccos \frac x{\sqrt{1+x^2}}\\&=\arcsin\frac1{\sqrt{1+x^2}}\\&=\arctan\frac 1x\\ \end{align}\tag 4

反三角函数的和差

反正弦:

arcsinx+arcsiny=arcsin(x1y2+y1x2)(xy0orx2+y21)=πarcsin(x1y2+y1x2)(x>0,y>0,x2+y2>1)=πarcsin(x1y2+y1x2)(x<0,y<0,x2+y2>1)(5)\begin{align} \arcsin x+\arcsin y&=\arcsin(x\sqrt{1-y^2}+y\sqrt{1-x^2})\quad(xy\le0\quad or\quad x^2+y^2\le1)\\ &=\pi-\arcsin(x\sqrt{1-y^2}+y\sqrt{1-x^2})\quad(x>0,y>0,x^2+y^2>1)\\ &=-\pi-\arcsin(x\sqrt{1-y^2}+y\sqrt{1-x^2})\quad(x<0,y<0,x^2+y^2>1)\\ \end{align}\tag5

arcsinxarcsiny=arcsin(x1y2y1x2)(xy0orx2+y21)=πarcsin(x1y2y1x2)(x>0,y<0,x2+y2>1)=πarcsin(x1y2y1x2)(x<0,y>0,x2+y2>1)(6)\begin{align} \arcsin x-\arcsin y&=\arcsin(x\sqrt{1-y^2}-y\sqrt{1-x^2})\quad(xy\ge0\quad or\quad x^2+y^2\le1)\\ &=\pi-\arcsin(x\sqrt{1-y^2}-y\sqrt{1-x^2})\quad(x>0,y<0,x^2+y^2>1)\\ &=-\pi-\arcsin(x\sqrt{1-y^2}-y\sqrt{1-x^2})\quad(x<0,y>0,x^2+y^2>1)\\ \end{align}\tag6

反余弦:

arccosx+arccosy=arccos[xy(1x2)(1y2)](x+y0)=2πarccos[xy(1x2)(1y2)](x+y<0)(7)\begin{align} \arccos x+\arccos y&=\arccos[xy-\sqrt{(1-x^2)(1-y^2})]\quad(x+y\ge0)\\ &=2\pi-\arccos[xy-\sqrt{(1-x^2)(1-y^2})]\quad(x+y<0)\\ \end{align}\tag7

arccosxarccosy=arccos[xy+(1x2)(1y2)](xy)=arccos[xy+(1x2)(1y2)](x<y)(8)\begin{align} \arccos x-\arccos y&=-\arccos[xy+\sqrt{(1-x^2)(1-y^2})]\qquad\qquad(x\ge y)\\ &=\arccos[xy+\sqrt{(1-x^2)(1-y^2})]\qquad\qquad(x<y)\\ \end{align}\tag8

反正切:

arctanx+arctany=arctanx+y1xy(xy<1)=π+arctanx+y1xy(x>0,xy>1)=π+arctanx+y1xy(x<0,xy>1)(9)\begin{align} \arctan x+\arctan y&=\arctan\frac{x+y}{1-xy}\quad(xy<1)\\ &=\pi+\arctan\frac{x+y}{1-xy}\quad(x>0,xy>1)\\ &=-\pi+\arctan\frac{x+y}{1-xy}\quad(x<0,xy>1)\\ \end{align}\tag9

arctanxarctany=arctanxy1+xy(xy>1)=π+arctanxy1+xy(x>0,xy<1)=π+arctanxy1+xy(x<0,xy<1)(10)\begin{align} \arctan x-\arctan y&=\arctan\frac{x-y}{1+xy}\quad(xy>-1)\\ &=\pi+\arctan\frac{x-y}{1+xy}\quad(x>0,xy<-1)\\ &=-\pi+\arctan\frac{x-y}{1+xy}\quad(x<0,xy<-1)\\ \end{align}\tag{10}

反三角函数的二倍

反正弦:

2arcsinx=arcsin(2x1x2)(x22)=πarcsin(2x1x2)(22<x1)=πarcsin(2x1x2)(1x<22)(11)\begin{align} 2\arcsin x&=\arcsin(2x\sqrt{1-x^2})\quad(|x|\le\frac{\sqrt{2}}{ 2})\\ &=\pi-\arcsin(2x\sqrt{1-x^2})\quad(\frac{\sqrt2}2<x\le1)\\ &=-\pi-\arcsin(2x\sqrt{1-x^2})\quad(-1\le x<-\frac{\sqrt2}2)\\ \end{align}\tag{11}

反余弦:

2arccosx=arccos(2x21)(0x1)=2πarccos(2x21)(1x<0)(12)\begin{align} 2\arccos x&=\arccos(2x^2-1)\quad\quad\quad\quad\quad(0\le x\le 1)\\ &=2\pi-\arccos(2x^2-1)\quad\quad\quad\quad\quad(-1\le x<0)\\ \end{align}\tag{12}

反正切:

2arctanx=arctan2x1x2(x<1)=π+arctan2x1x2(x>1)=π+arctan2x1x2(x<1)(13)\begin{align} 2\arctan x&=\arctan\frac{2x}{1-x^2}\quad\qquad\qquad\qquad(|x|<1)\\ &=\pi+\arctan\frac{2x}{1-x^2}\quad\qquad\qquad\qquad(|x|>1)\\ &=-\pi+\arctan\frac{2x}{1-x^2}\qquad\qquad\qquad(x<-1) \end{align}\tag{13}

余弦反余弦复合的重要关系公式:

cos(narccosx)=(x+x21)n+(xx21)n2(n1)(14)\cos(n\arccos x)=\frac{(x+\sqrt{x^2-1})^n+(x-\sqrt{x^2-1})^n}2\quad(n\ge 1)\tag{14}